Материал готовится,
пожалуйста, возвращайтесь позднее
пожалуйста, возвращайтесь позднее
Introducing Play 2.0
Since 2007, we have been working on making Java web application development easier. Play started as an internal project at Zenexity and was heavily influenced by our way of doing web projects: focusing on developer productivity, respecting web architecture, and using a fresh approach to packaging conventions from the start - breaking so-called JEE best practices where it made sense.
In 2009, we decided to share these ideas with the community as an open source project. The immediate feedback was extremely positive and the project gained a lot of traction. Today - after two years of active development - Play has several versions, an active community of 4,000 people, with a growing number of applications running in production all over the globe.
Opening a project to the world certainly means more feedback, but it also means discovering and learning about new use cases, requiring features and un-earthing bugs that we were not specifically considered in the original design and its assumptions. During the two years of work on Play as an open source project we have worked to fix this kind of issues, as well as to integrate new features to support a wider range of scenarios. As the project has grown, we have learned a lot from our community and from our own experience - using Play in more and more complex and varied projects.
Meanwhile, technology and the web have continued to evolve. The web has become the central point of all applications. HTML, CSS and JavaScript technologies have evolved quickly - making it almost impossible for a server-side framework to keep up. The whole web architecture is fast moving towards real-time processing, and the emerging requirements of today’s project profiles mean SQL no longer works as the exclusive datastore technology. At the programming language level we’ve witnessed some monumental changes with several JVM languages, including Scala, gaining popularity.
That’s why we created Play 2.0, a new web framework for a new era.
Built for asynchronous programming
Today’s web applications are integrating more concurrent real-time data, so web frameworks need to support a full asynchronous HTTP programming model. Play was initially designed to handle classic web applications with many short-lived requests. But now, the event model is the way to go for persistent connections - though Comet, long-polling and WebSockets.
Play 2.0 is architected from the start under the assumption that every request is potentially long-lived. But that’s not all: we also need a powerful way to schedule and run long-running tasks. The Actor-based model is unquestionably the best model today to handle highly concurrent systems, and the best implementation of that model available for both Java and Scala is Akka - so it’s going in. Play 2.0 provides native Akka support for Play applications, making it possible to write highly-distributed systems.
Focused on type safety
One benefit of using a statically-typed programming language for writing Play applications is that the compiler can check parts of your code. This is not only useful for detecting mistakes early in the development process, but it also makes it a lot easier to work on large projects with a lot developers involved.
Adding Scala to the mix for Play 2.0, we clearly benefit from even stronger compiler guarantees - but that’s not enough. In Play 1. x, the template system was dynamic, based on the Groovy language, and the compiler couldn’t do much for you.
Since 2007, we have been working on making Java web application development easier. Play started as an internal project at Zenexity and was heavily influenced by our way of doing web projects: focusing on developer productivity, respecting web architecture, and using a fresh approach to packaging conventions from the start - breaking so-called JEE best practices where it made sense.
In 2009, we decided to share these ideas with the community as an open source project. The immediate feedback was extremely positive and the project gained a lot of traction. Today - after two years of active development - Play has several versions, an active community of 4,000 people, with a growing number of applications running in production all over the globe.
Opening a project to the world certainly means more feedback, but it also means discovering and learning about new use cases, requiring features and un-earthing bugs that we were not specifically considered in the original design and its assumptions. During the two years of work on Play as an open source project we have worked to fix this kind of issues, as well as to integrate new features to support a wider range of scenarios. As the project has grown, we have learned a lot from our community and from our own experience - using Play in more and more complex and varied projects.
Meanwhile, technology and the web have continued to evolve. The web has become the central point of all applications. HTML, CSS and JavaScript technologies have evolved quickly - making it almost impossible for a server-side framework to keep up. The whole web architecture is fast moving towards real-time processing, and the emerging requirements of today’s project profiles mean SQL no longer works as the exclusive datastore technology. At the programming language level we’ve witnessed some monumental changes with several JVM languages, including Scala, gaining popularity.
That’s why we created Play 2.0, a new web framework for a new era.
Built for asynchronous programming
Today’s web applications are integrating more concurrent real-time data, so web frameworks need to support a full asynchronous HTTP programming model. Play was initially designed to handle classic web applications with many short-lived requests. But now, the event model is the way to go for persistent connections - though Comet, long-polling and WebSockets.
Play 2.0 is architected from the start under the assumption that every request is potentially long-lived. But that’s not all: we also need a powerful way to schedule and run long-running tasks. The Actor-based model is unquestionably the best model today to handle highly concurrent systems, and the best implementation of that model available for both Java and Scala is Akka - so it’s going in. Play 2.0 provides native Akka support for Play applications, making it possible to write highly-distributed systems.
Focused on type safety
One benefit of using a statically-typed programming language for writing Play applications is that the compiler can check parts of your code. This is not only useful for detecting mistakes early in the development process, but it also makes it a lot easier to work on large projects with a lot developers involved.
Adding Scala to the mix for Play 2.0, we clearly benefit from even stronger compiler guarantees - but that’s not enough. In Play 1. x, the template system was dynamic, based on the Groovy language, and the compiler couldn’t do much for you.
Загрузка...
Выбрать следующее задание
Ты добавил
Выбрать следующее задание
Ты добавил